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Abstract: The registration between indocyanine green angiography (ICGA) and multi-color
scanning laser (MCSL) imaging fundus images is vital for the joint linear lesion segmentation
in ICGA and MCSL and the evaluation whether MCSL can replace ICGA as a non-invasive
diagnosis for linear lesion. To our best knowledge, there are no studies focusing on the image
registration between these two modalities. In this paper, we propose a framework based on
convolutional neural networks for the multimodal affine registration between ICGA and MCSL
images, which contains two parts: coarse registration stage and fine registration stage. In the
coarse registration stage, the optic disc is segmented and its centroid is used as a matching point
to perform coarse registration. The fine registration stage regresses affine parameters directly
using jointly supervised and weakly-supervised loss function. Experimental results show the
effectiveness of the proposed method, which lays a sound foundation for further evaluation of
non-invasive diagnosis of linear lesion based on MCSL.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Introduction

Pathological myopia is a major cause of blindness in many developed countries [1,2]. T. Tokoro et
al. proposed that high myopia accompanied by visual dysfunctions might be defined as pathologic
myopia [3]. According to [4,5], linear lesion (as indicated by the yellow arrow in Fig. 1) is
an important clinical sign for evaluating the development from high myopia to pathological
myopia. At present, indocyanine green angiography (ICGA) (shown in Fig. 1(a), (b), (c) and
(d)) is considered to be the “Ground Truth” for the diagnosis of linear lesions in ophthalmology
clinic [6,7], but it requires the injection of contrast agent indocyanine green (ICG), which may
cause adverse reactions such as allergy, dizziness, and even shock [8]. So it is an urgent need to
find a non-invasive imaging modality that can replace ICGA for the diagnosis of linear lesions.
Multi-color scanning laser (MCSL) imaging is a non-invasive imaging technology, in which
three lasers with different wavelengths (488nm, 515nm and 820nm) are used to scan the fundus
simultaneously. MCSL image fused by several fundus images (shown in Fig. 1(e), (f), (g) and
(h)) can reveal linear lesions more richly than other non-invasive modality such as color fundus
imaging and red-free fundus imaging and some other invasive one such as fundus fluorescein
angiography (FFA). Therefore, we try to investigate whether MCSL could replace ICGA as a
non-invasive imaging for linear lesion diagnosis. At the beginning of this study, the ICGA and
MCSL images need to be registered. As can be seen from Fig. 1, the multimodal registration
between ICGA andMCSL fundus images is a big challenge due to two aspects: (1) the appearance
differences between ICGA and MCSL are large. (2) The retinal vessels are so fuzzy in the late
phase ICGA images that it can’t be utilized as structure feature during the registration.
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Fig. 1. ICGA images and MCSL images. (a) ICGA image with linear lesions (about 20
minutes after ICG injection). (b) ICGA image of normal fundus (about 20 minutes after
ICG injection). (c) ICGA image with linear lesions (about 30 minutes after ICG injection).
(d) ICGA image of normal fundus (about 30 minutes after ICG injection). (e), (f), (g) and
(h) are the corresponding MCSL images for (a), (b), (c) and (d) respectively. The yellow
arrow indicates linear lesions.

Traditional image registration methods can be roughly classified into two categories: intensity-
based methods and feature-based methods [9,10]. The main idea of the intensity-based methods
[11,12] are to search the geometric transformation parameters iteratively. The geometric
transformation parameters are optimized by maximizing or minimizing a similarity metric
between the transformed moving image and the corresponding fixed image. Common similarity
metrics include cross-correlation (CC) [13], mutual information (MI) [14], normalized mutual
information (NMI) [15], and sum of squared difference (SSD) [16], etc. Because of the iterative
operations, the time and computational cost of registration is high. Feature-based methods
[17,18] usually use features such as point, edge, line, contours surfaces and area, to establish
the correspondence between fixed image and moving image. Algorithms such as SIFT [19],
SUNSAN [20] and SURF [21] are often used in feature extraction. Generally, the retinal fundus
image registration adopts the feature-based methods. Existing feature-based fundus image
registration [22–25] mainly used vessel features for registration of color fundus images, FFA
image and ICG image. However, it is not suitable to use retinal vessel features for late stage ICGA
and MSCL image registration. As shown in Fig. 1(a)-(d), the retinal vessels in ICGA images are
revealed as hyper-fluorescent with noisy background (Fig. 1(a)) or low contrast (Fig. 1(b)) at
about 20 minutes and blurry hypo-fluorescent at the very late stage (about 30+ minutes, Fig. 1(c)
and (d)).

In order to overcome the shortcomings of the traditional methods, deep learning based methods,
which have achieved great success in image classification [26], segmentation [27] and object
detection [28], are introduced in image registration and achieves better performances. In particular,
the registration time is greatly reduced, making intraoperative real-time registration possible. The
deep learning based methods can be classified as supervised learning, weakly supervised learning
and unsupervised learning. The supervised methods [29,30] need the corresponding ground truth
deformations obtained by traditional methods or manual registration. Reference [31] proposed a
dual-supervised deep learning strategy that involves using both supervised and unsupervised loss
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functions. There are also some works [32,33] using weakly supervised learning to merge the
tissue segmentation label into the registration network and guide the network to learn registration
parameters, which do not require registration ground truth. In recent years, to avoid the difficulties
of registration ground truth obtainment and exhausting manual segmentation, the unsupervised
learning method [34–36] has been developed. In this kind of methods, similarity metric is used as
cost function to be maximized or minimized during network training. However, [37] pointed out
that manually crafted similarity metrics have made very little success in multimodal registration.
Recently, generation adversarial network (GAN) has been applied in registration [38–42], in
which the discriminator is equivalent to the similarity metric.

Several studies [29], [43–45] have pointed out that a single convolutional neural network can
not work well in registration task with large deformation. To solve this problem, [29] proposed
CNN regressors to predict the affine parameters in a hierarchical manner. Reference [43] adopted
the multi-stage strategy by stacking multiple stages of ConvNets, in which each stage has its own
registration task. Work [44] proposed a multi-step affine framework which contains only one
neural network. As in a recurrent network, the parameters of the affine network are shared by
all steps. At each step, the network outputs the parameters to refine the previously predicted
affine transformation. However, the best number of iterations needs a lot of experiments to be
sure and recurrent training of a single neural network will increase the training time. Paper [45]
proposed an unsupervised end-to-end learning with progressive alignment through deep recursive
cascaded neural network. In this work, they trained a multi-network to transform images with
large deformation gradually. Furthermore, [46] proposed a two-step registration method with
traditional registration methods.
To the best of our knowledge, multimodal registration of ICGA and MCSL has not been

reported yet. Since the high myopia cases to be analyzed are in the stationary phase, the key
fundus features such as optic disc, retinal vessel and linear lesion do not change significantly in
the MCSL and ICGA image pair, although there may be a certain time interval in the acquisition
of image pair (usually no more than 1-2 weeks which is the common appointment interval of
ICGA check in clinic). That is to say, the differences between these two modalities are mainly
caused by the capture angle and visual field, which can be aligned through affine transformation
such as scaling, rotation, etc. However, the registration task still faces great challenges because
both the inter-subject differences of ICGA/MCSL and intra-subject differences between ICGA
and MCSL are great, as shown in Fig. 1. This will make it difficult to optimize the required affine
transformations at once, including scaling, rotation, translation and shearing transformations,
especially large translations and scaling.
Therefore, in this paper, we propose a two-stage affine registration framework to achieve the

registration of ICGA andMCSL images from coarse to fine. The affine registration parameters are
regressed through the two-stage registration networks. In the first stage, the feature information
of the image such as optic disc is used for coarse registration, which can greatly decrease the
initial registration error. In the second stage, in order to avoid the over-fitting caused by the
registration ground truth based supervised training and the under-fitting caused by the few prior
structural feature (only optic disc) based weakly-supervised training, we adopts a dual-supervised
training strategy by combining the supervised and weakly-supervised loss functions to achieve
the fine registration of image pair. The main contributions of this paper are as follows:
-The framework of two-stage registration from coarse to fine is proposed.
-The supervised and weakly-supervised loss functions are jointly applied in this work.
-Image prior information such as optic disc is efficiently used in both stages of the registration.
-Multimodal registration for ICGA and MCSL images is explored for the first time.
The remainder of the paper is organized as follows. In Section 2, the proposed method is

described in detail. In Section 3, experimental results are shown and analyzed, and followed by
the conclusions and discussions in Section 4.
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1. Methods

1.1. Overview

The overview of the proposed method is shown in Fig. 2, including coarse registration and fine
registration in both training and test phases.

Fig. 2. The framework of proposed method. In the training phase, black dash lines represent
the data flow of dual supervision. In the test phase, the red lines represent the data flow of
final registration.

Due to the large scale and space differences between the original ICGA and MCSL image
pair, a coarse registration consisting of translation and scaling can greatly reduce the initial
registration error and reduce the difficulty of the subsequent fine registration. The translation
parameters are calculated from the centroid coordinates of the paired optic disc labels. The
scaling parameter is an empirical value which is statistically analyzed and estimated according
to our experimental dataset. The fine registration network is improved from a Resnet18 model
[47]. During the training of the fine registration network, the predicted affine parameters and the
registered moving label are used to calculate the supervised loss function Lrmse (Eq. (10)) and the
weakly-supervised loss function Ldice (Eq. (11)) respectively, which realize the dual-supervision
loss function L (Eq. (9)).
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The networks are trained to obtain the optimal network parameters ξ̂ by minimizing the
dual-supervision loss function L and predict the optimal affine transformation parameters M̂ :

ξ̂ = arg min
ξ

L(xf , xm,Mgt,M, lf , lm; ξ) (1)

M̂ = Γ(xf , xm, lf , lm; ξ) (2)
Where Γ represents the proposed networks. ξ is the parameters of the neural network. xf and xm
are the original fixed image and moving image respectively. lf and lm present the corresponding
fixed label and moving label respectively. Mgt and M are the ground truth transformation
parameters and predicted transformation parameters respectively.
In the test phase, the original image pair (xf , xm) and the corresponding label pair (lf , lm) are

coarsely registered first, and then the coarsely registered image pair and the corresponding label
pair are sent to the trained fine registration network to predict the parameters. In the coarse
registration Γcoarse stage, two trained U-Net networks [27] are used to automatically segment the
optic disc label (lf , lm). The translation parameters obtained from the label centroid coordinates
alignment, combining with the scaling parameters, are adopted to obtain the coarse registration
affine matrix Mcoarse :

Γcoarse(xf , xm, lf , lm) = Mcoarse (3)
And then the coarsely registered moving image xwm and the corresponding label lwm are obtained

by Eq. (4):
Re sampler(xm, lm;Mcoarse) = xwm, lwm (4)

where the Re sampler(·) is the operation of affine transformation.
In the fine registration Γfine stage, the trained fine registration network is used to predict the

affine transformation matrix Mfine:

Γfine(xf , xwm, lf , lwm) = Mfine (5)

Finally, the original moving image xm is interpolated only once to get the final registered image
xregm :

Re sampler(xm;McoarseMfine) = xregm (6)
It can avoid information loss caused by multiple interpolations. No manual registration

parameters or manually labeled optic disc labels are required during the test phase.
We summarize some advantages of the proposed framework as shown in Fig. 2. First, we make

full use of optic disc label in both stages of registration, which solves the problem that retinal
vessels are very insignificant in the late phase of ICGA imaging (shown as Fig. 1(a)-(d)). Second,
the supervised and weakly-supervised loss function are effectively combined in the proposed
network. Such dual supervision mechanism is the trend of deep learning based registration [48].

1.2. Affine registration

Affine registration is a linear and global transformation, in which the transformation parameters
for each pixel are the same. That is to say the coordinates of the moving image can be mapped to
the fixed image through a set of parameters. Equation (7) represents the mathematical expression
of the affine transformation (rotate around image origin).
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where (X,Y) and (X′,Y ′) represent the coordinates of the moving image and the fixed image
respectively. a11, a12, a21 and a22 are the deformation parameters; b1 and b2 are translation
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parameters along axis x, y respectively. Parameters a11, a12, a21, a22, b1 and b2 constitute the
coordinate transformation matrix. Equation (8) also gives the detailed composition of the affine
transformation matrix, where θ is the rotation angle, kx, ky are the shear coefficients in x and y
direction, and λx, λy are the scaling factors in x and y direction, respectively.

1.3. Coarse registration

To make the deep learning network suitable for multimodal image registration with large
deformation, it is necessary to reduce the initial deformation. In this paper, the prior information
of the image is applied to coarsely register the image pairs. In ICGA and MCSL images, the
most remarkable features are the retinal vessels and optic disc. But the retinal vessels are very
faint in the late-stage ICGA images (as shown in Fig. 1(c) and (d)) or severely disturbed by the
choroidal vessels. Moreover, the noise is serious in the middle-stage ICGA images (as shown in
Fig. 1(a) and (b)). Therefore, the retinal vessels are not suitable to be used as prior information.
On the contrary, optic disc with near-circular structure is robust in both modalities, so it can be
used as the prior information in the coarse registration.

In the training phase, the manual-labeled optic disc label is used to calculate the affine matrix
for the coarse registration of the image pair and the corresponding optic disc pair. In the test
phase, as shown in Fig. 3, two individually trained U-Net networks are used to automatically
segment the optic disc labels in ICGA and MCSL images respectively for coarse registration.

Fig. 3. Coarse registration stage.

The centroid coordinates of the fixed optic disc label (X′,Y ′) and the moving one (X2,Y2) are
used to calculate the coarse registration matrix Mcoarse. The coarse registration transformation
is applied to the moving image and its optic disc label. Equation (8) describes the process of
coarse registration, where tx = X′ − X and ty = Y ′ − 0.6Y are translation parameters in x and y
directions and the 0.6 is the empirical value of the scaling parameter in the height direction.
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1.4. Fine registration

Figure 4 presents the structure of the fine registration network, which consists of two parts:
feature extraction layers and regression layers. The feature extraction layers are implemented
based on Resnet18 without classification layer. The regression layers contain four cascaded
fully connected layers after the last global average pooling layer of Resnet18, with 512, 256, 64



Research Article Vol. 11, No. 8 / 1 August 2020 / Biomedical Optics Express 4449

and 6 output neurons, respectively. Leakly-Relu activation function is used after the first three
fully connected layers to increase the network’s non-linearity. The input of the network is the
concatenation of the image pair on the channel, and the output is the regression of six parameters
of the affine matrix denoted by the last fully connected layer.

Fig. 4. The network of fine registration stage.

In order to reduce the network’s dependence on the ground truth parameters and further
improve the registration performance, the optic disc label information is used as an auxiliary
supervision and the dual-supervised loss functions are adopted to optimize the fine registration
network. Equation (9) shows the loss function of the network, which composes of root mean
square error (RMSE) loss and Dice loss.

Ldual = λ1Lrmse + λ2Ldice (9)

Where λ1 = λ2 = 1.
The network uses the RMSE loss function Lrmse shown in Eq. (10) to evaluate the difference

between the ground truth affine parameters and the predicted affine parameters in the form of
mini-batch data.

Lrmse(Mgt, M̂) =

√√√
1
b

b∑
i=1
| |v(Mi

gt) − v(M̂
i
)| |22 (10)

where b represents batch size, v(·) is the vector form of matrix, and Mi
gt and M̂

i
represent ith

ground truth affine parameter matrix and the corresponding predicted affine parameter matrix in
a batch, respectively.

The predicted affine registration parameters are applied to the coarsely warped optic disc label
lwm to obtain the registrated label lregm by spatial resampling. The Dice loss for lregm and the fixed
label lf is shown in Eq. (11):

Ldice(lf , lregm ) = 1 − 2
(lf ∩ lregm )

|lf | + |lregm |
(11)

1.5. Implementation details

All the experiments were implemented with PyTorch on a Linux server running Ubuntu 16.04,
with Intel Core i7-8700 CPU and 8 GB RAM. The networks were trained on a single NVIDIA
GeForce GTX1060 GPU with 3 GB RAM. The initial learning rate is set to 1e-3 in the coarse
registration stage with the SGD optimizer and Poly strategy. The learning rate of the fine
registration stage is 1e-3, and the optimizer is the Adam. Batch size b is set as 16.
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2. Experiments and results

2.1. Dataset

The collection and analysis of image data were approved by the Institutional Review Board
of Shanghai General Hospital and adhered to the tenets of the Declaration of Helsinki. An
informed consent was obtained from each subject. The medical records, ICGA (Heidelberg
Retina Angiography 2, Heidelberg Engineering, Heidelberg, Germany, 596X496 pixels) and
MCSL (SPECTRALIS, Heidelberg Engineering, Heidelberg, Germany, from 596X496 pixels
to 960X 496 pixels) database of Shanghai General Hospital from July 2018 to June 2019 were
searched and reviewed. Totally 117 pairs of ICGA and MCSL images from 112 eyes (85 patients)
were included, including 102 with linear lesions (such as Fig. 1(a) and (c)) and 15 without linear
lesions (such as Fig. 1(b) and (d)). The heights of the original MCSL images are fixed at 496,
while the widths vary from 596 to 960 because of different view angles. Previous study [49]
reported that linear lesions are hypofluorescent in the late ICGA phase, which is 15 minutes after
ICG dye injection. In the late phase, blood vessels have different morphologies and appear as
bright white (such as Fig. 1(a) and (b)) or dark gray (such as Fig. 1(c) and (d)). In order to reduce
the computational cost, all images are resampled to (256, 256), grayed and normalized to [0, 1].
Online data augmentation was applied during training, including rotation [-5◦, 5◦], translation
[-6, 6] and scaling [0.9, 1.2]. Five-fold cross validation was adopted to evaluate the performance
of the proposed method. All data were randomly split into five parts according to the subjects
and initial registration errors, which contain 23, 23, 23, 24 and 24 image pairs.
Ground Truth. Under the supervision of the experienced ophthalmologists, three pairs of

key points including the intersections and bifurcations of blood vessels are manually selected
in the ICGA and the corresponding MCSL image. The ground truth of affine parameters are
calculated by three pairs of key points. The ground truth of optic disc is manually labeled under
the supervision of the experienced ophthalmologist.

2.2. Evaluation of optic disc segmentation

In the coarse registration stage, the optic disc is segmented based on the original U-Net both in
ICGA and MCSL images. The indexes including IoU (Intersection over Union), Dice coefficient,
sensitivity, specificity and accuracy of the optic disc segmentation are shown in Table 1, which
indicate the good performance and ensure the feasibility of optic disc centroid calculation in
the coarse registration stage and the prior image feature based weakly-supervision in the fine
registration stage.

Table 1. The cross-validation performance of optic disc segmentation, measured with mean and
standard deviation.

Dataset IoU Dice Sensitivity Specificity Accuracy

ICGA 0.851± 0.083 0.914± 0.009 0.928± 0.063 0.997± 0.004 0.994± 0.004

MCSL 0.892± 0.104 0.894± 0.018 0.908± 0.102 0.994± 0.005 0.988± 0.010

2.3. Metrics

To evaluate the performance of the proposed method objectively, the RMSE of distance on five
key points and Dice similarity coefficient (DCS) [50] and target registration error (TRE) [33] on
the optic disc label pair are adopted in this paper. The DSC reflects the overlap degree of the
optic disc label pair and the TRE reflects the center distance error of the optic disc label pair.
Paired Wilcoxon signed-rank tests (significance level αH = 0.05) are applied to compare medians
of the registration results between different methods.
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2.4. Ablation experiments

In this section, the effect of two-stage network and the improvement of dual-supervised loss
functions are investigated. Table 2 and Table 3 show the results of the ablation experiments,
in which “Baseline” means single-stage registration (only fine registration network) and single
supervision loss function with RMSE loss, “TS” means two-stage registration+ single supervised
loss function of RMSE loss, and “TD” means two-stage registration+ dual supervised loss
function of RMSE loss and Dice loss.

Table 2. The cross-validation registration results of ablation experiments, measured with
percentiles [25th, 50th, and 75th].a

Method RMSE DSC TRE

Bef. reg. - - -

Baseline [6.09, 8.24, 11.90] [0.630, 0.739, 0.842] [4.52, 7.62, 10.98]

TS [3.53, 4.94, 6.73] [0.803, 0.868, 0.907] [2.23, 3.81, 5.10]

TD [3.13, 4.42, 5.91] [0.847, 0.888, 0.919] [1.58, 3.16, 4.30]

a(Bef. reg. represents before registration; “TS” represents Two stage+ Single supervised loss function; “TD” represents
Two stage+Dual supervised loss function.)

Table 3. The cross-validation registration results of ablation experiments, measured with mean
and standard deviation.a

Method RMSE DSC TRE

Bef. reg. 33.29± 3.27 0.270± 0.05 31.82± 3.21

Baseline 9.48± 5.34 0.704± 0.19 8.398± 5.6

TS 5.21± 2.32 0.855± 0.07 3.77± 1.92

TD 4.79± 2.18 0.874± 0.06 3.14± 1.69

a(Bef. reg. represents before registration; “TS” represents Two stage+ Single supervised loss function; “TD” represents
Two stage+Dual supervised loss function.)

As can be seen from Table 2, the proposed “TD” framework achieved a median RMSE of 4.42
pixels on five key points with first and third quartiles being 3.13 and 5.91 pixels, a median DSC
of 0.888 on optic disc label with first and third quartiles being 0.847 and 0.919, and a median
TRE of 3.162 on label centroids with first and third quartiles being 1.58 and 4.30 pixels. More
detailed results are summarized in Table 3 and shown in Fig. 5. Compared with original image
pair, the “Baseline” method significantly decreased the RMSE of key points (p-value < 0.001)
and the TRE of optic disc label centroids (p-value < 0.001), and significantly increased the DSC
of the optic disc label pair (p-value < 0.001). The “TS” method significantly outperformed the
“Baseline” method on all metrics of RMSE, DSC and TRE with p-values < 0.001. This result
indicate that the optic disc label centroid alignment based coarse registration can reduce the
initial error effectively and reduce the difficulty of fine registration. The proposed “TD” method
significantly surpassed “TS” method in indexes of RMSE and TRE with p-values < 0.001 and in
index of DSC with p-value= 0.0011, which indicates that the addition of auxiliary supervision of
optic disc label can further refine the registration result. Specially, the improvement on RMSE
index between “TS” and “TD” in Table 2 and Table 3 seems to be slight. We think the reason may
be that the annotated key points are relatively sparse and fine registration (such as small-scaling,
translation, and rotation) cannot be reflected well in the RMSE indicator. But as shown in
Fig. 6(c) and (d), these fine tunings do improve the overall the registration result effectively.
Figure 6 shows an example of registration results with different methods (the corresponding

original image pair are shown in Fig. 1(a) and (e)). It can be seen from Fig. 6 that the overlap
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Fig. 5. Boxplot of the cross-validation results obtained from the networks described in
section 2. The numerical results are also summarized in Table 2.

Fig. 6. The example of registration results with different methods. The corresponding
original ICGA and MCSL image pair are shown in Fig. 1(a) and (e) respectively. The rows
from up to down represent the overlap of the image pair after registration, the corresponding
magnified sections in the yellow box and the overlap of the optic disc label pair (white region)
after registration respectively. Each column represents the results of different methods: (a)
Before registration. (b) Baseline. (c) Two stage+Single supervised loss function (TS). (d)
Two stage+Dual supervised loss function (TD). (e) Ground Truth (GT).
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degrees of both retinal vessels and optic discs gradually increase from left to right, which
indicates that the proposed methods are gradually optimized through two-stage registration
and dual-supervision strategies. By comparing with the overlap degree of the optic discs
and the corresponding labels in Fig. 6(b) and Fig. 6(c), it can be seen that the coarse-fine
registration strategy is effective. By comparing with overlap degree of the retinal vessels and the
optic disc labels in Fig. 6(c) and Fig. 6(d), it can illustrate that combining the supervised and
weakly-supervised loss function can improve the registration performance finely.

Figure 7 shows some registration results of two-modality image pair with linear lesions. It can
be seen from Fig. 7 that the linear lesions in ICGA and MCSL images can be aligned well, which
indicate the possibility of non-invasive diagnosis of linear lesion via MCSL imaging.

Fig. 7. The registration results of ICGA and MCSL images with linear lesions. The yellow
arrows refer to linear lesions. The last row shows the enlarged view of the part of image in
the red box.

The influences of model training based on data with or without lesions are also investigated in
this section. Besides of the model which has been trained based on the mixed data (data with
and without lesions, shown in Table 2 and Table 3 as “TD”), an additional model is trained only
based on the abnormal data (102 pairs of images with lesions). Because there are only 15 pairs
of normal data (data without lesions), we do not train the network only based on the normal
data. Then we validate these two models with the mixed data, abnormal data and normal data,
respectively. Table 4 shows the corresponding cross-validation registration results of the ablation
experiments.
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Table 4. The cross-validation registration results of ablation experiments, measured with
percentiles [25th, 50th, and 75th] (the first 6 rows) and mean and standard deviation (the next 6

rows).a

Model Validation RMSE DSC TRE

TD-M
Mixed data [3.13, 4.42, 5.91] [0.847, 0.888, 0.919] [1.58, 3.16, 4.30]

Abnormal data [3.17, 4.59, 5.98] [0.855, 0.892, 0.922] [1.58, 2.96, 4.24]

Normal data [3.07, 3.87, 5.31] [0.804, 0.874, 0.896] [3.03, 3.60, 4.30]

TD-A
Mixed data [3.59, 4.73, 6.47] [0.804, 0.870, 0.910] [2.24, 3.80, 5.01]

Abnormal data [3.49, 4.65, 6.17] [0.814, 0.870, 0.910] [2.24, 3.60, 4.94]

Normal data [4.47, 6.38, 7.34] [0.701, 0.811, 0.878] [2.55, 5.00, 6.28]

TD-M
Mixed data 4.79± 2.18 0.874± 0.06 3.14± 1.69

Abnormal data 4.84± 2.21 0.879± 0.06 3.08± 1.70

Normal data 4.54± 1.96 0.837± 0.08 3.58± 1.56

TD-A
Mixed data 5.14± 2.15 0.848± 0.08 3.84± 1.89

Abnormal data 5.00± 2.09 0.857± 0.07 3.72± 1.78

Normal data 6.10± 2.41 0.800± 0.12 4.78± 2.46

a(“TD” represents Two stage+Dual supervised loss function. ‘TD-M’ and ‘TD-A’ represent the model trained with
mixed data and the model trained with abnormal data, respectively.)

As can be seen from Table 4, the overall performances of the model trained with mixed data
(TD-M) are generally better than that of the model trained with abnormal data (TD-A). We think
the possible reason is that the relatively large quantity and good diversity of training samples
(data with and without lesions) in model TD-M. In addition, on model TD-A, the validation
results with normal data is worse than that with abnormal data. The reason may be that model
TD-A enables the network to learn and take advantage of the feature of linear lesion, which can
not be used in the normal data.

3. Conclusion and discussions

The pathological myopia developed from high myopia and its complications is one of the main
causes of blindness worldwide. The timely detection and analysis of linear lesion is necessary and
effective for the prevention, supervision and treatment of pathological myopia. In our previous
related research [7], an improved cGAN based framework was proposed to segment linear lesions
in ICGA images. As mentioned above, ICGA is invasive and a part of patients may suffer
from allergic reactions. To solve this problem, our team focuses the study on the possibility
evaluation for the replacement between non-invasive MCSL imaging and invasive ICGA imaging
in linear lesion diagnosis and analysis. The evaluation conclusion will be drawn according to the
results of linear lesion joint segmentation in MCSL and ICGA images, which is our ongoing and
challenging research. The MCSL and ICGA registration research in this paper is the necessary
premise of the linear lesion joint segmentation and the subsequent evaluation.
In this paper, we propose a deep learning based two-stage registration framework for the

registration of ICGA and MCSL images, which contains the coarse registration stage and fine
registration stage. The optic disc label information is fully used in both coarse registration and
fine registration to increase the robustness and effectiveness of the network. We also combine
supervised and weakly-supervised learning strategies to train the fine registration network, which
are achieved through RMSE loss and Dice loss of optic disc label, respectively.

There are still some shortcomings in this paper: (1) The quantity of the experimental dataset is
insufficient, which only includes 117 image pairs (102 with linear lesions and 15 without linear
lesions). The generalization of the proposed registration network can be improved by increasing
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the amount of dataset, especially the quantity of data without linear lesions. (2) To simplify
the coarse registration stage, the original U-Net is used for the segmentation of the optic disc,
whose segmentation error (shown in Table 1) may affect the registration performance gently.
The optic disc segmentation accuracy should be further improved based on the improved U-Net
or other advanced CNNs so that more information such as edge of optic disc can be fully used
in the two-modality image registration. Introducing the adversarial training strategy and using
discriminator as a similarity measurement function for multi-modality image registration are also
a direction of our next work. (3) Although both ICGA and MCSL use confocal laser scanning
imaging technology, the distortion of the retina’s natural curvature cannot be unified because of the
following two reasons: (a) The ICGA and MCSL images used in our experiments were acquired
from two different devices. (b) The wavelength and number of lasers are different (ICGA: 795 nm,
MCSL: 488 nm, 515 nm and 820 nm). The affine registration may not be sufficient to model the
transformation between ICGA and MCSL. We will explore registration algorithm combining
affine transformation and non-rigid transformation to achieve better registration performances in
our near future work. On the foundation of further improvement of the registration accuracy,
we will use the complementary characteristics of multi-modal information for the non-invasive
detection and analysis of linear lesions in high myopia.
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